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Why Ray Tracing?

• Rasterization couldn’t handle global effects well

• (Soft) shadows

• Light bounces more than once

Lingqi Yan. 2020. GAMES 101.3



Ray Tracing by Turner Whitted
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Turner Whitted (right)The first scene through ray tracing 



From Rasterization to Ray Tracing

• Simple shading (typified by OpenGL, z-buffering, and Phong illumination model) assumes:

• direct illumination (light leaves source, bounces at most once, enters eye)

• no shadows (except using shadow buffer)

• opaque surfaces

• point light sources (otherwise integration for area lights)

• sometimes fog 

• (Whitted-style) ray tracing relaxes that, simulating:

• specular reflection

• shadows

• transparent surfaces (transmission with refraction)

• sometimes indirect illumination (a.k.a. global illumination)

• sometimes area light sources

• sometimes fog
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Let’s start from: Ray Casting
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Ray Casting

• A very flexible visibility algorithm
Raycast() // generate a picture

for each pixel x,y
color(pixel) = Trace(ray_through_pixel(x,y))

Trace(ray) // fire a ray, return RGB radiance
// of light traveling backward along it

object_point = Closest_intersection(ray)
if object_point return Shade(object_point, ray)
else return Background_Color

Closest_intersection(ray)
for each surface in scene

calc_intersection(ray, surface)
return the closest point of intersection to viewer 
(also return other info about that point, e.g., surface 

normal, material properties, etc.)

Shade(point, ray) // return radiance of light leaving
// point in opposite of ray direction

calculate surface normal vector
use Phong illumination formula (or something similar)
to calculate contributions of each light source

• loop y, loop x

• shoot ray from eye point 

through pixel (x,y) into 

scene

• intersect with all surfaces, 

find first one the ray hits

• shade that surface point to 

compute pixel (x,y)’s color
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Ray Casting

• This can be easily generalized to give recursive ray tracing, that will be 

discussed later

• Can handle translucency (which rasterization cannot!)

• calc_intersection (ray, surface) is the most important operation

• compute not only coordinates, but also geometric or appearance attributes at 

the intersection point
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Ray-Surface Intersections

• How to represent a ray? 

• A ray is 𝒑 + 𝑡𝒅:  𝒑 is ray origin, 𝒅 the direction

• 𝑡 = 0 at origin of ray,𝑡 > 0 in positive direction of ray

• typically assume 𝒅 = 1

• 𝒑 and 𝒅 are typically computed in world space

• Recap: how to represent a surface?

• Implicit functions: 𝑓(𝒙) = 0

• Parametric functions: 𝒙 = 𝒈(𝑢, 𝑣)
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Ray-Surface Intersections

• Compute Intersections:

• Substitute ray equation for x

• Find roots

• Implicit: 𝑓(𝒑 + 𝑡𝒅) = 0

• one equation in one unknown – univariate root finding

• Parametric: 𝒑 + 𝑡𝒅 − 𝒈(𝑢, 𝑣) = 0

• three equations in three unknowns (t,u,v) – multivariate root finding

• For univariate polynomials, use closed form solution; otherwise, use numerical root 

finder
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Ray-Sphere Intersection

• Ray-sphere intersection is an easy case

• A sphere’s implicit function is:  𝑥2 + 𝑦2 + 𝑧2 − 𝑟2 = 0 if sphere at origin

• The ray equation is: 𝑥 = 𝑝𝑥 + 𝑡𝑑𝑥
𝑦 = 𝑝𝑦 + 𝑡𝑑𝑦
𝑧 = 𝑝𝑧 + 𝑡𝑑𝑧

• Substitution gives: 𝑝𝑥 + 𝑡𝑑𝑥
2 + 𝑝𝑦 + 𝑡𝑑𝑦

2
+ 𝑝𝑦 + 𝑡𝑑𝑦

2
− 𝑟2 = 0

• A quadratic equation in 𝑡.

• Quadratic formula has two roots:  𝑡 = (−𝐵 ± 𝐵2 − 4𝐶)/2
• which correspond to the two intersection points
• negative discriminant means ray misses sphere

• Solve the standard way: 𝐴 = 𝑑𝑥
2 + 𝑑𝑦

2 + 𝑑𝑧
2 = 1 (unit vector)

𝐵 = 2 𝑝𝑥𝑑𝑥 + 𝑝𝑦𝑑𝑦 + 𝑝𝑧𝑑𝑧
𝐶 = 𝑝𝑥

2 + 𝑝𝑦
2 + 𝑝𝑧

2 − 𝑟2
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Ray-Polygon Intersection

• Assuming we have a planar polygon
• first, find intersection point of ray with plane

• then check if that point is inside the polygon

• Latter step is a point-in-polygon test in 3-D:
• inputs: a point x in 3-D and the vertices of a polygon in 3D

• output: INSIDE or OUTSIDE

• problem can be reduced to point-in-polygon test in 2-D (how?)

• Point-in-polygon test in 2-D:
• easiest for triangles

• easy for convex n-gons

• harder for concave polygons

• most common approach: subdivide all polygons into triangles

• for optimization tips, see article by Haines in the book Graphics Gems IV
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Ray-Plane Intersection

• Plane: 𝒙 − 𝒒 ⋅ 𝒏 = 0
• where 𝒒 is reference point on plane,  𝒏 is plane normal.  (some might assume 𝒏 = 1; we won’t)
• 𝒙 is point on plane
• if what you’re given is vertices of a polygon

• compute n with cross product of two (non-parallel) edges
• use one of the vertices for 𝒒

• rewrite plane equation as 𝒙 ⋅ 𝒏 + 𝐷 = 0
• equivalent to the familiar formula 𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧 + 𝐷 = 0

• where (𝐴, 𝐵, 𝐶) = 𝒏, 𝐷 = −𝒒 ⋅ 𝒏
• fewer values to store

• Steps:
• substitute ray formula 𝒑 + 𝑡𝒅 into plane eqn, yielding 1 equation in 1 unknown (𝑡).

• solution: 𝑡 = −
𝒑⋅𝒏+𝐷

𝒅⋅𝒏

• note: if 𝒅 ⋅ 𝒏 = 0 then ray and plane are parallel - REJECT
• note: if 𝑡 < 0 then intersection with plane is behind ray origin - REJECT

• compute 𝑡, plug it into ray equation to compute point 𝒙 on plane
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Projecting A Polygon from 3D to 2D

• Point-in-polygon testing is simpler and faster if we do it in 2D
• The simplest projections to compute are to the 𝑥𝑦, 𝑦𝑧, or 𝑧𝑥 planes
• If the polygon has plane equation 𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧 + 𝐷 = 0, then

• 𝐴 is proportional to projection of polygon in 𝑦𝑧 plane
• 𝐵 is proportional to projection of polygon in 𝑧𝑥 plane
• 𝐶 is proportional to projection of polygon in 𝑥𝑦 plane
• Example: the plane 𝑧 = 3 has (𝐴, 𝐵, 𝐶, 𝐷) = (0,0,1, −3), so 𝐶 is the largest and 𝑥𝑦

projection is best.  We should do point-in-polygon testing using 𝑥 and 𝑦 coords.
• In other words, project into the plane for which the perpendicular component of the normal 

vector 𝒏 is largest

• Optimization:
• We should optimize the inner loop (ray-triangle intersection testing) as much as possible
• We can determine which plane to project to, for each triangle, as a preprocess

• Point-in-polygon testing in 2D is still an expensive operation (how to reduce?)

• Point-in-rectangle is a special case
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Now Ray Tracing: Ray Types

• We’ll distinguish four ray types:
• Eye rays:  originating at the eye

• Shadow rays:  from surface point toward 
light source

• Reflection rays:  from surface point in 
mirror direction

• Transmission rays:  from surface point in 
refracted direction
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Ray Tracing Algorithm

• send ray from eye through each pixel (eye ray)

• compute point of closest intersection with a 
scene surface

• shade that point by computing shadow rays

• spawn reflected and refracted rays, repeat
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Specular Reflection Rays

•An eye ray hits a shiny surface

• We know the direction from which a specular reflection would come, based on the 
surface normal

• Fire a ray in this reflected direction

• The reflected ray is treated just like an eye ray: it hits surfaces and spawns new rays

• Light flows in the direction opposite to the rays (towards the eye), is used to calculate 
shading

• It’s easy to calculate the reflected ray direction
Reflected Ray

Eye

N

P

A Shiny Surface

Note:  arrowheads show the direction 
in which we're tracing the rays, not 
the direction the light travels.
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Specular Transmission Rays

• To add transparency:

• Add a term for light that’s coming from within the object

• These rays are refracted (bent) when passing through a boundary between 
two media with different refractive indices

• When a ray hits a transparent surface fire a transmission ray into the object at 
the proper refracted angle

• If the ray passes through the other side of the object then it bends again (the 
other way)
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Refraction

• Refraction:

• The bending of light due to its different velocities through different materials

• rays bend toward the normal when going from sparser to denser materials (e.g. air to 
water), away from normal in opposite case

• Refractive index:

• Light travels at speed 𝑐/𝑛 in a material of refractive index 𝑛

• 𝑐 is the speed of light in a vacuum

• 𝑐 varies with wavelength, hence rainbows and prisms

• Use Snell’s law 𝑛1 sin 𝜃1 = 𝑛2 sin 𝜃2 to derive refracted ray direction

• note: ray dir. can be computed without trig functions (only sqrts)

n

n1

n2

1

2

MATERIAL INDEX OF REFRACTION
air/vacuum 1
water 1.33
glass about 1.5
diamond 2.4
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Ray Hierarchy

EYE

L1 L2

Obj1

Obj2

Obj3

Shadow Ray

Other Ray

Eye

Obj1

RAY TREE
RAY PATHS (BACKWARD)

L1

L2

T
R

Obj2
Obj3

L1

L2

L1

L2
R

T R

X X

X
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Ray Casting vs. Ray Tracing

Ray Casting -- 1 bounce

Ray Tracing -- 2 bounce Ray Tracing -- 3 bounce
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From a Ray Caster to a Ray Tracer
Trace(ray) // fire a ray, return RGB radiance

// of light traveling backward along it
object_point = Closest_intersection(ray)
if object_point return Shade(object_point, ray)
else return Background_Color

Shade(point, ray) /* return radiance along ray */
radiance = black; /* initialize color vector */
for each light source

shadow_ray = calc_shadow_ray(point,light)
if !in_shadow(shadow_ray,light)

radiance += phong_illumination(point,ray,light)
if material is specularly reflective

radiance += spec_reflectance *
Trace(reflected_ray(point,ray)))

if material is transmissive
radiance += spec_transmittance *

Trace(refracted_ray(point,ray)))
return radiance 25



Problem with Simple Ray Tracing 
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One problem:

Any other problems?



Aliasing

• Ray tracing shoots one ray per pixel

• But a pixel represents an area; one ray samples only one point within the area; an area 

consists infinite number of points

• These points may not all have the same color

• This leads to aliasing 

• jaggies

• moiré patterns

• How do we fix this problem?

• Recall antialiasing we talked earlier 
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Antialiasing: Supersampling

• We talked about two antialiasing methods
• Supersampling
• Pre-filtering (e.g., MIP-mapping for texture mapping)

• Here we use supersampling
• Fire more than one ray for each pixel (e.g., a 3x3 grid of rays)
• Average the results using a filter (or some kind of filter)

28• What if pre-filtering?  



Antialiasing: Adaptive Supersampling

29

• Supersampling can be done adaptively

• divide pixel into 2x2 grid, trace 5 rays (4 at corners, 1 at center)

• if the colors are similar then just use their average

• otherwise recursively subdivide each cell of grid

• keep going until each 2x2 grid is close to uniform or limit is reached

• filter the result

• Behavior of adaptive supersampling

• Areas with fairly constant appearance are sparsely sampled

• Areas with lots of variability are heavily sampled



Antialiasing: Stochastic Adaptive  Supersampling
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• Issues
• even with massive supersampling visible aliasing is possible when the sampling 

grid interacts with regular structures that may be almost aligned with sampling 
grids

• noticeable beating, moiré patterns, etc… are possible

• Solution: adaptive supersampling can be done stochastically
• instead of a regular grid, subsample randomly (or pseudo)
• aliasing is replaced by less visually annoying noise
• adaptively sample statistically
• keep taking samples until the color estimates converge

• How?
• jittering:  perturb a regular grid
• Jitter pattern can be pre-generated (designed)
• Consider blue noise! 



Temporal Aliasing
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• Aliasing happens in time as well as space

• the sampling rate is the frame rate, 30Hz for NTSC video, 24Hz for film

• fast moving objects move large distances between frames

• if we point-sample time, objects have a jerky look

• Real media (film and video) automatically do temporal anti-aliasing

• photographic film integrates over the exposure time

• video cameras have persistence (memory)

• this shows up as motion blur in the photographs

• To avoid temporal aliasing we need to filter in time too

• so compute frames at 120Hz (should it be fixed?) and average them together (with 
appropriate weights)?

• fast-moving objects become blurred streaks



Motion Blur
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• Apply stochastic sampling to time as well as space

• Assign a time as well as an image position to each ray

• The result is still-frame motion blur and smooth animation

• This is an example of distribution ray tracing



Motion Blur: a classic example 
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• From Foley et. al. Plate III.16

• Rendered using distribution ray 

tracing at 4096x3550 pixels, 16 

samples per pixel.

• Note motion-blurred reflections 

and shadows with penumbrae cast 

by extended light sources.



Distribution Ray Tracing
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• We’ve done

• distribute rays throughout a pixel to get spatial antialiasing

• distribute rays in time to get temporal antialiasing (motion blur)

• We can

• distribute rays in reflected ray direction to simulate gloss

• distribute rays across area light source to simulate penumbras (soft shadows)

• distribute rays throughout lens area to simulate depth of field

• distribute rays across hemisphere to simulate diffuse interreflection (radiosity)

• a.k.a. “distributed ray tracing” or stochastic ray tracing

• powerful idea! (but can get slow)



Gloss and Highlights
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• Simple ray tracing spawns only one reflected ray

• But Phong illumination models a cone of rays

• Produces fuzzy highlights

• Change fuzziness (cone width) by varying the shininess 
parameter

• The solution is to spawn a cluster of rays

• Again, stochastic sampling can be used

• Stochastically sample rays within the cone 

• Sampling probability drops off sharply away from the 
specular angle

• Highlights can be soft, blurred reflections of other objects



Soft Shadows
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• Point light sources produce sharp shadow edges

• the point is either shadowed or not

• only one ray is required

• With an extended light source the surface point may be partially visible to it (partial 
eclipse)

• only part of the light from the sources reaches the point

• the shadow edges are softer

• the transition region is the penumbra

• Distribution ray tracing can simulate this:

• fire shadow rays from random points on the source

• weight them by the brightness

• the resulting shading depends on
the fraction of the obstructed
shadow rays

source

surface

opaque 
object

shadow
rays



Soft Shadows
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fewer rays,
more noise

more rays,
less noise

source

surface

opaque 
object

shadow
rays



Depth of Field
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• The pinhole camera model only approximates real optics

• real cameras have lenses with focal lengths

• only one plane is truly in focus

• points away from the focus project as disks

• the further away from the focus the larger the disk

• the range of distance that appear in focus is the depth of field

• simulate this using stochastic sampling through different parts of the lens

Image

Lens

Surface



Instancing
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• The basic idea of instancing is that an object is distorted by a transformation matrix 

before the object is displayed. For example, in 2D an arbitrary ellipse is an instance of 

a circle because we can store a unit circle and the composite transformation matrix 

that transforms the circle to the ellipse. Thus the explicit construction of the ellipse is 

left as a future procedure operation at render time. 

• With the concept of instancing, in ray tracing we can choose what space to do ray-

object intersection in. If we have a ray a+tb (a: eye point; b: ray vector; t: parameter) 

we want to intersect with the transformed object, we can instead intersect an inversely-

transformed ray (still a ray!) with the untransformed object. That means, computing a 

ray and an ellipse intersection can be converted to a problem of computing ray-circle 

intersection instead. 

• Pay attention to normal transformation for correct shading: if the normal at the 

intersection point of the base object is n, compute its correct normal in the transformed 

space.  



Instancing
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Speeding Up Ray Tracing

• Trace fewer rays
• most relevant in recursive ray tracing

• Do fewer ray-surface intersection tests
• subsequent hits on the same object often hit the same polygon. 
• shadow object caching

• When a shadow ray hits an object, remember that object and check it first against the next 
shadow ray heading toward that light.

• If it hits, you know that shadow applies.

• Speed up each ray-surface intersection test
• optimize ray-triangle, ray-sphere intersection code
• compile with optimizer
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Spatial Data Structures

• Data structures for efficiently storing geometric information

• They are useful for

• Collision detection (will the spaceships collide?)

• Location queries (which is the nearest post office?)

• Chemical simulations (which protein will this drug molecule interact with?)

• Rendering (is this aircraft carrier on-screen?), and more

• Good data structures can give speed up ray tracing by 10x, 100x, or more

• We’ll look at

• Hierarchical bounding volumes

• Grids

• Octrees

• BSP trees
42



Bounding Volumes

• Simple notion: wrap things that are hard to check for ray intersection in things that are easy to 
check.
• Example: wrap a complicated polygonal mesh in a box
• Ray can’t hit the real object unless it hits the box
• Adds some overhead, but generally pays for itself.

• Most common bounding volume types: sphere and box
• box can be axis-aligned (good and bad), or not

• You want a snug fit!

Good!
Bad!
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Hierarchical Bounding Volumes (HBV’s)

• Tree data structure: 
• List of bounding volumes (BV’s), e.g. spheres, boxes
• Each BV can contain a list of sub-volumes
• E.g., Human figure:  

• torso bounding-box (BB) contains arm BB, which contains finger BB, etc.

• Intersection testing:  recursively descend tree

intersect(BV)
if ray misses BV, return MISS
closest = infinity
for each subvolume stored in BV

if ray intersects subvolume, and closer than closest
update closest

return closest

• Works well if you use good (appropriate) bounding volumes

• If your BVs are objects, you can have multiple classes and pick the best for each enclosed object!
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Grids

• Data structure: a 3-D array of cells (voxels) that tile space

• Each cell points to list of all surfaces intersecting that cell 

• Intersection testing:

• Start tracing at cell where ray begins

• Step from cell to cell, searching for the first intersection point

• At each cell, test for intersection with all surfaces pointed to by that cell

• If there is an intersection, return the closest one
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More on Grids

• Be Careful!  The fact that a ray passes through a cell and hits an object doesn’t mean the ray hit that 
object in that cell

• Optimization: cache intersection point and ray id with respect to each object

• Grids are a poor choice when the world is nonhomogeneous 

• e.g. a teapot in a stadium: many polygons clustered in a small space

• How many cells to use?

• too few   many objects per cell   slow

• too many   many empty cells to step through   slow

• Grids work well when you can arrange that each cell lists a few (ten, say) objects

• Better strategy for some scenes:  nested grids
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Octrees

• Quadtree is the 2-D generalization of binary tree

• node (cell) is a square

• recursively split into four equal sub-squares

• stop when leaves get “simple enough”
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Octrees

• Octree is the 3-D generalization of quadtree

• node (cell) is a cube, recursively split into eight equal sub-cubes

• for ray tracing:

• stop splitting when the number of objects intersecting the cell gets “small enough” or the tree depth 
exceeds a limit

• internal nodes store pointers to children, leaves store list of surfaces

• more expensive to traverse than a grid

• but an octree adapts to nonhomogeneous, clumpy scenes better

trace(cell, ray) { // returns object hit or NONE

if cell is leaf, return closest (objects_in_cell(cell))

for child cells pierced by ray, in order // 1 to 4 of these

obj = trace(child, ray)

if obj!=NONE return obj

return NONE

}
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Which Data Structure is Best for Ray Tracing?

• Grids are easy to implement, but they’re memory hogs (and slow) for nonhomogeneous 

scenes, i.e. most scenes

• Octrees are pretty good, but not as fast as grids for some scenes

• Nested grids seem to be the fastest on static scenes

• If scene is dynamic, the cost of regenerating or updating the data structure may become 

an issue

• In such cases, hierarchical bounding volumes may be best

• Hierarchical bounding volumes easy to implement if your model is naturally hierarchical 

(e.g. human), otherwise not
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k-d Trees

• Relax the rules for quadtrees and octrees:

• first variant: k-dimensional (k-d) tree

• don’t always split at midpoint

• split only one dimension at a time (i.e. x or y or z)

• useful for clustering and choosing colormaps for color image quantization
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BSP Trees

• Relax the rules for quadtrees and octrees:

• second variant: binary space partitioning (BSP) tree

• permit splits with any line

• in general, split k dimensional space with k-1 dimensional hyperplane

• 2-D space split with lines (most of our examples)

• 3-D space split with planes

• each node corresponds to a (potentially unbounded) convex polyhedron

• useful for Painter’s algorithm
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Building a BSP Tree

• Let’s look at simple example with 3 line segments

• Arrowheads are to show left and right sides of lines.

• Using line 1 or 2 as root is easy.

Line 2
Line 3

Line 1

Viewpoint

1

1

2

3

A B C D

a BSP tree
using 2 as root

A

B

D

C

3
2

the subdivision
of space it implies
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Building the Tree 2

• Using line 3 for the root requires a split

Line 2a

Line 3

Line 1

Viewpoint

1

2b2a

Line 2b

3
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Uses for Binary Space Partitioning (BSP) Trees

• Painter’s algorithm rendering
• good for

• static 3-D scenes with moving viewpoint (flight simulators)
• architectural scenes with a small number of polygons (DOOM, an old game)
• if you don’t have z-buffer hardware

• Ray tracing

• History:
• BSP trees first used by Naylor, Fuchs, et al. for Painter’s algorithm ~1980
• theoreticians scoffed at their worst-case performance
• considered unpromising
• revived by John Carmack, author of Quake, and the PC game community

• out of necessity: no z-buffer hardware for PC’s at the time
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Painter’s Algorithm with BSP trees

• Build the tree

• Involves splitting some polygons

• Slow, but done only once for static scene

• Correct traversal lets you draw in back-to-front or front-to-back order for any viewpoint

• Order is view-dependent

• Precompute tree once

• Do the “sort” on the fly
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Drawing a BSP Tree

• Each polygon has a set of coefficients:
Ax + By + Cz + D

• Plug the coordinates of the viewpoint in and see:
>0 : front side
<0 : back facing
=0 : on plane of polygon

• Back-to-front draw: inorder traversal, do farther child first

• Front-to-back draw: inorder traversal, do near child first

front_to_back(tree, viewpt) {
if (tree == null)  return;
if (positive_side_of(root(tree), viewpt)) {

front_to_back(positive_branch(tree, viewpt);
display_polygon(root(tree));
front_to_back(negative_branch(tree, viewpt);

}
else { …draw negative branch first…}

}
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Drawing Back to Front

• Use Painter’s Algorithm for hidden surface removal

Line 2a

Line 3

Line 1

Viewpoint 1

2b2a

3

Line 2b

Steps:
–Draw objects on far side of line 3

»Draw objects on far side of 
line 2a

–Draw line 1

»Draw line 2a

–Draw line 3

–Draw objects on near side of line 3

»Draw line 2b
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Further Speedups

• Do back-face culling with same sign test

• Draw front to back, and…
• Keep track of partially filled spans
• Only render parts that fall into spans that are still open
• Quit when the image is filled

• Clip the BSP tree against the portions of space that you can see!
• Called portals
• Initial view volume is entire viewing frustum
• When you look through a doorway, intersect current volume with “beam” defined by 

doorway
• Skip a BSP node if it doesn’t intersect the current view volume
• Much faster than clipping every polygon
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Clipping BSP Trees

• Suppose you have all n polygons in a BSP tree, and it’s time to clip them for 
rendering.

• Clip the tree to the view frustum!
• This is an intersection operation between the tree of polygons and a BSP tree 

representing the frustum

• An O(log n) operation, while clipping all n polygons is O(n)
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Clipping Using Spatial Data Structures

• The data structures we used to accelerate ray tracing will work here too!

• In each case, the goal is to accept or reject whole sets of polygons.

• The O(n) task becomes O(log n)

• Scene must be (mostly) fixed, to amortize cost of building the data structure

• terrain fly-through

• gaming

• Off-screen stuff can swap out!

Hierarchical bounding volumes Octrees

61



More about rendering 

• Micro-surfaces (e.g., different roughness) 

• Special materials (e.g., different paints or coatings) 

• Volumetric material (e.g., skin, with sub-surface reflection)  

• Special material + special geometry (e.g., hair)
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