
Global Illumination I
Whitted-Style Ray Tracing

1

Why Ray Tracing?

• Rasterization couldn’t handle global effects well

• (Soft) shadows

• Light bounces more than once

Lingqi Yan. 2020. GAMES 101.3

Ray Tracing by Turner Whitted

5

Turner Whitted (right)The first scene through ray tracing

From Rasterization to Ray Tracing

• Simple shading (typified by OpenGL, z-buffering, and Phong illumination model) assumes:

• direct illumination (light leaves source, bounces at most once, enters eye)

• no shadows (except using shadow buffer)

• opaque surfaces

• point light sources (otherwise integration for area lights)

• sometimes fog

• (Whitted-style) ray tracing relaxes that, simulating:

• specular reflection

• shadows

• transparent surfaces (transmission with refraction)

• sometimes indirect illumination (a.k.a. global illumination)

• sometimes area light sources

• sometimes fog

6

Ray Casting

7

Let’s start from: Ray Casting

8

Ray Casting

• A very flexible visibility algorithm
Raycast() // generate a picture

for each pixel x,y
color(pixel) = Trace(ray_through_pixel(x,y))

Trace(ray) // fire a ray, return RGB radiance
// of light traveling backward along it

object_point = Closest_intersection(ray)
if object_point return Shade(object_point, ray)
else return Background_Color

Closest_intersection(ray)
for each surface in scene

calc_intersection(ray, surface)
return the closest point of intersection to viewer
(also return other info about that point, e.g., surface

normal, material properties, etc.)

Shade(point, ray) // return radiance of light leaving
// point in opposite of ray direction

calculate surface normal vector
check shadow map for light visibility
use Phong illumination formula (or something similar)
to calculate contributions of each light source

• loop y, loop x

• shoot ray from eye point

through pixel (x,y) into

scene

• intersect with all surfaces,

find first one the ray hits

• shade that surface point to

compute pixel (x,y)’s color

9

Ray Casting

• This can be easily generalized to give recursive ray tracing, that will be

discussed later

• Can handle translucency (which rasterization cannot!)

• calc_intersection (ray, surface) is the most important operation

• compute not only coordinates, but also geometric or appearance attributes at

the intersection point

10

Recursive ray tracing

11

eye point

image plane

light source

Recursive ray tracing

12

eye point

image plane

light source

Reflected ray

(specular reflection)

Recursive ray tracing

13

eye point

image plane

light source

Reflected ray

(specular reflection)

Refracted rays

(specular transmission)

Recursive ray tracing

14

Until Later!

eye point

image plane

light source

primary ray

secondary rays

shadow rays

Ray-Surface Intersection

15

Ray Equation

• How to represent a ray?

• A ray is 𝒑 + 𝑡𝒅: 𝒑 is ray origin, 𝒅 the direction

• 𝑡 = 0 at origin of ray,𝑡 > 0 in positive direction of ray

• typically assume 𝒅 = 1

• 𝒑 and 𝒅 are typically computed in world space

16

𝒑
𝒑 + 𝑡𝒅

Ray-Surface Intersections

• How to represent a ray?

• A ray is 𝒑 + 𝑡𝒅: 𝒑 is ray origin, 𝒅 the direction

• 𝑡 = 0 at origin of ray, 𝑡 > 0 in positive direction of ray

• typically assume 𝒅 = 1

• 𝒑 and 𝒅 are typically computed in world space

• Recap: how to represent a surface?

• Implicit functions: 𝑓(𝒙) = 0

• Parametric functions: 𝒙 = 𝒈(𝑢, 𝑣)

17

𝒑

𝒑 + 𝑡𝒅

𝐱 = 𝒑 + 𝑡𝒅
𝑓(𝒙) = 0

Solve the x and t for

Ray-Surface Intersections

• Compute Intersections:

• Substitute ray equation for x= 𝒑 + 𝑡𝒅

• Find roots

• Implicit: 𝑓(𝒑 + 𝑡𝒅) = 0

• one equation in one unknown – univariate root finding

• Parametric: 𝒑 + 𝑡𝒅 − 𝒈(𝑢, 𝑣) = 0

• three equations in three unknowns (t,u,v) – multivariate root finding

• For univariate polynomials, use closed form solution; otherwise, use numerical root

finder
18

Ray-Sphere Intersection

• Ray-sphere intersection is an easy case

• A sphere’s implicit function is: 𝑥2 + 𝑦2 + 𝑧2 − 𝑟2 = 0 if sphere at origin

• The ray equation is: 𝑥 = 𝑝𝑥 + 𝑡𝑑𝑥
𝑦 = 𝑝𝑦 + 𝑡𝑑𝑦
𝑧 = 𝑝𝑧 + 𝑡𝑑𝑧

• Substitution gives: 𝑝𝑥 + 𝑡𝑑𝑥
2 + 𝑝𝑦 + 𝑡𝑑𝑦

2
+ 𝑝𝑦 + 𝑡𝑑𝑦

2
− 𝑟2 = 0

• A quadratic equation in 𝑡.

• Solve the standard way: 𝐴 = 𝑑𝑥
2 + 𝑑𝑦

2 + 𝑑𝑧
2 = 1 (unit vector)

𝐵 = 2 𝑝𝑥𝑑𝑥 + 𝑝𝑦𝑑𝑦 + 𝑝𝑧𝑑𝑧
𝐶 = 𝑝𝑥

2 + 𝑝𝑦
2 + 𝑝𝑧

2 − 𝑟2

• Quadratic formula has two roots: 𝑡 = (−𝐵 ± 𝐵2 − 4𝐶)/2
• which correspond to the two intersection points
• We take the smaller t (the first intersection)
• negative discriminant means ray misses sphere

20

Ray Intersection With Triangle

21

Triangle is in a plane

• Ray-plane intersection

• Test if hit point is inside triangle

Many ways to optimize…

Ray Intersection With Plane

22

Ray Intersection With Plane

23

𝐱0

𝐱2

𝐱1

𝐨

𝐱(𝑡)

𝐝

If 𝑡 > 0 and 𝒓 𝑡 𝑖𝑛𝑠𝑖𝑑𝑒:
return Intersection point, 𝐫(𝑡)

Barycentric Coordinates

24

𝐩 = 𝑏0𝐱0 + 𝑏1𝐱1 + 𝑏2𝐱2

𝐱0

𝐱2

𝐱1

𝐩
𝐴0

𝐴2

𝐴1

𝑏0 = 𝐴0/𝐴

𝑏1 = 𝐴1/𝐴

𝑏2 = 𝐴2/𝐴

𝐴0 =
1
2 𝐱1 − 𝐩 × 𝐱2 − 𝐩 ∙ 𝐧

𝐴1 =
1
2 𝐱2 − 𝐩 × 𝐱0 − 𝐩 ∙ 𝐧

𝑏0 + 𝑏1 + 𝑏2 = 1

𝐧

𝐴2 =
1
2 𝐱0 − 𝐩 × 𝐱1 − 𝐩 ∙ 𝐧

Inside: 0 < 𝑏𝑖< 1 𝑖 = 0,1,2 , and coplanar

Outside: otherwise

Ray-Polygon Intersection

• Assuming we have a planar polygon
• first, find intersection point of ray with plane

• then check if that point is inside the polygon

• Latter step is a point-in-polygon test in 3-D:
• inputs: a point x in 3-D and the vertices of a polygon in 3D

• output: INSIDE or OUTSIDE

• problem can be reduced to point-in-polygon test in 2-D (how?)

• Point-in-polygon test in 2-D:
• easiest for triangles

• easy for convex n-gons

• harder for concave polygons

• most common approach: subdivide all polygons into triangles

• for optimization tips, see article by Haines in the book Graphics Gems IV

25

Whitted-Style Ray Tracing

28

Whitted-Style Ray Tracing

29

Ray Types

• We’ll distinguish four ray types:
• Eye rays: originating at the eye

• Shadow rays: from surface point toward
light source

• Reflection rays: from surface point in
mirror direction

• Transmission rays: from surface point in
refracted direction

30

Ray Tracing Algorithm

1. send ray from eye through each pixel

2. compute point of closest intersection with
a scene surface

3. shade that point by computing shadow rays

4. spawn reflected and refracted rays, repeat
2-4 steps

31

Specular Reflection Rays

•An eye ray hits a shiny surface

• We know the direction from which a specular reflection would come, based on the
surface normal

• Fire a ray in this reflected direction

• The reflected ray is treated just like an eye ray: it hits surfaces and spawns new rays

• Light flows in the direction opposite to the rays (towards the eye), is used to calculate
shading

• It’s easy to calculate the reflected ray direction
Reflected Ray

Eye

N

P

A Shiny Surface

Note: arrowheads show the direction
in which we're tracing the rays, not
the direction the light travels.

32

Specular Transmission Rays

• To add transparency:

• Add a term for light that’s coming from within the object

• These rays are refracted (bent) when passing through a boundary between
two media with different refractive indices

• When a ray hits a transparent surface fire a transmission ray into the object at
the proper refracted angle

• If the ray passes through the other side of the object then it bends again (the
other way)

33

Refraction

• Refraction:

• The bending of light due to its different velocities through different materials

• rays bend toward the normal when going from sparser to denser materials (e.g. air to
water), away from normal in opposite case

• Refractive index:

• Light travels at speed 𝑐/𝑛 in a material of refractive index 𝑛

• 𝑐 is the speed of light in a vacuum

• 𝑐 varies with wavelength, hence rainbows and prisms

• Use Snell’s law 𝑛1 sin 𝜃1 = 𝑛2 sin 𝜃2 to derive refracted ray direction

• note: ray dir. can be computed without trig functions (only sqrts)

n

n1

n2

1

2

MATERIAL INDEX OF REFRACTION
air/vacuum 1
water 1.33
glass about 1.5
diamond 2.4

34

From a Ray Caster to a Ray Tracer

Trace(ray) // fire a ray, return RGB radiance
// of light traveling backward along it

object_point = Closest_intersection(ray)
if object_point return Shade(object_point, ray)
else return Background_Color

Shade(point, ray) /* return radiance along ray */
radiance = black; /* initialize color vector */
for each light source

shadow_ray = calc_shadow_ray(point,light)
if !in_shadow(shadow_ray,light)

radiance += phong_illumination(point,ray,light)
if material is specularly reflective

radiance += spec_reflectance *
Trace(reflected_ray(point,ray)))

if material is specularly transmissive
radiance += spec_transmittance *

Trace(refracted_ray(point,ray)))
return radiance 36

ray eye_ray;
eye_ray.level = 0;

reflected_ray(ray in):
ray out;
out.level = in.level++
return out

Trace(ray) // fire a ray, return RGB radiance of light traveling backward along it

if ray.level > n return Background_Color;

object_point = Closest_intersection(ray)

if object_point return Shade(object_point, ray)

else return Background_Color

Ray Casting vs. Ray Tracing

Ray Casting -- 1 bounce Ray Tracing -- 2 bounce Ray Tracing -- 3 bounce
37

Problem with Simple Ray Tracing

38

Aliasing

• Ray tracing shoots one ray per pixel

• But a pixel represents an area; one ray samples only one point with the area; an area

consists infinite number of points

• These points may not all have the same color

• This leads to aliasing

• jaggies

• moire patterns

• How do we fix this problem?

• Recall antialiasing we talked earlier

39

Antialiasing: Supersampling

• We talked about two antialiasing methods
• Supersampling
• Pre-filtering (MIP-mapping)

• Here we use supersampling
• Fire more than one ray for each pixel (e.g., a 3x3 grid of rays)
• Average the results using a filter (or some kind of filter)

40

Antialiasing: Adaptive Supersampling

41

• Supersampling can be done adaptively

• divide pixel into 2x2 grid, trace 5 rays (4 at corners, 1 at center)

• if the colors are similar then just use their average

• otherwise recursively subdivide each cell of grid

• keep going until each 2x2 grid is close to uniform or limit is reached

• filter the result

• Behavior of adaptive supersampling

• Areas with fairly constant appearance are sparsely sampled

• Areas with lots of variability are heavily sampled

Motion Blur

44

• Apply stochastic sampling to time as well as space

• Assign a time as well as an image position to each ray

• The result is still-frame motion blur and smooth animation

• This is an example of distribution ray tracing

Motion Blur: a classic example

45

• From Foley et. al. Plate III.16

• Rendered using distribution ray

tracing at 4096x3550 pixels, 16

samples per pixel.

• Note motion-blurred reflections

and shadows with penumbrae cast

by extended light sources.

Ray Tracing Acceleration

46

Whitted-Style Ray Tracing

47

Ray-Surface Intersection!

Ray-Surface Intersection

48

• 𝐫 𝑡 = 𝐨 + 𝑡𝐝

Solve 𝐫 𝑡 − 𝑐 2 = 𝑅2

Sphere

𝐱0

𝐱2

𝐱1

𝐨

𝐱(𝑡)

𝐝

Solve 𝐫 𝑡 − 𝐱0 ∙ (𝐱10× 𝐱20) = 0

Triangle

𝑡 = 𝐱0𝒐∙𝐱10×𝐱20
𝒅∙𝐱10×𝐱20

If 𝑡 > 0 and 𝐱 𝑡 𝑖𝑛𝑠𝑖𝑑𝑒:
return Intersection point, 𝐱(𝑡)

Ray Tracing – Performance Challenges

49

10.7M triangles!

uniform grid quadtree/octree kd-tree BSP-tree

Ray Tracing – Performance Challenges

• Checking intersections with everything!

• Checking intersections with complex geometry!

50

Bounding Volumes

Spatial partitioning

Grid Acceleration

• 1. Find bounding box

• 2. Create grid

• 3. Store each object in

overlapping cells

51

Grid Acceleration

• Step through grid in ray

traversal order

• For each grid cell :

• Test intersection with all

objects stored at that cell

52

Grid Resolution?

• One cell

• No speedup

53

Grid Resolution?

• Too many cells

• Inefficiency due to

extraneous grid traversal

54

Ray Tracing – Grid Resolution?

55

Hierarchy!

Spatial Partitioning

56

Spatial Partitioning

General task:

• 1. Build the tree

• 2. For a given point, travel the root–to-leaf path and test intersections
57

Octrees

• Quadtree is the 2-D generalization of binary tree

• node (cell) is a square

• recursively split into four equal sub-squares

• stop when leaves get “simple enough”

58

Octrees

• Octree is the 3-D generalization of quadtree

• node (cell) is a cube, recursively split into eight equal sub-cubes

• for ray tracing:

• stop splitting when the number of objects intersecting the cell gets “small enough” or the tree depth
exceeds a limit

• internal nodes store pointers to children, leaves store list of surfaces

• more expensive to traverse than a grid

• but an octree adapts to nonhomogeneous, clumpy scenes better

trace(cell, ray) { // returns object hit or NONE

if cell is leaf, return closest (objects_in_cell(cell))

for child cells pierced by ray, in order // 1 to 4 of these

obj = trace(child, ray)

if obj!=NONE return obj

return NONE

}
59

Which Data Structure is Best for Ray Tracing?

• Grids are easy to implement, but they’re memory hogs (and slow) for nonhomogeneous scenes, i.e. most

scenes

• Octrees are pretty good, but not as fast as grids for some scenes

• Nested grids seem to be the fastest on static scenes

• If scene is dynamic, the cost of regenerating or updating the data structure may become an issue

• In such cases, hierarchical bounding volumes may be best

• Hierarchical bounding volumes easy to implement if your model is naturally hierarchical (e.g. human),

otherwise not

• For other visibility algorithms:

• BSP trees useful for Painter’s algorithm...

60

k-d Trees

• Relax the rules for quadtrees and octrees:

• first variant: k-dimensional (k-d) tree

• don’t always split at midpoint

• split only one dimension at a time (i.e. x or y or z)

• useful for clustering and choosing colormaps for color image quantization

61

BSP Trees

• Relax the rules for quadtrees and octrees:

• second variant: binary space partitioning (BSP) tree

• permit splits with any line

• in general, split k dimensional space with k-1 dimensional hyperplane

• 2-D space split with lines (most of our examples)

• 3-D space split with planes

• each node corresponds to a (potentially unbounded) convex polyhedron

• useful for Painter’s algorithm

62

Building a BSP Tree

63
https://en.wikipedia.org/wiki/Binary_space_partitioning

Building a Good Tree - the tricky part

• A naïve partitioning of n polygons will yield O(n3) polygons!

• Algorithms exist to find partitionings that produce O(n2).
• For example, try all remaining polygons and add the one which causes the fewest splits (greedy algorithm!)
• Fewer splits -> larger polygons -> better polygon fill efficiency

• Also, we want a balanced tree.
• More important for ray casting than scan conversion.

• These goals conflict.

• note: in the examples we’ve shown, the geometric objects being stored are planar, and we split using the planes of these
objects, but that needn’t be so – could theoretically split with any plane

64

Uses for Binary Space Partitioning (BSP) Trees

• Painter’s algorithm rendering
• good for

• static 3-D scenes with moving viewpoint (flight simulators)
• architectural scenes with a small number of polygons (DOOM)
• if you don’t have z-buffer hardware

• Add a few monsters and such after the environment is drawn

• Ray tracing

• Solid modeling with polyhedra

• History:
• BSP trees first used by Naylor, Fuchs, et al. for Painter’s algorithm ~1980
• theoreticians scoffed at their worst-case performance
• considered unpromising
• revived by John Carmack, author of Quake, and the PC game community

• out of necessity: no z-buffer hardware for PC’s at the time

65

