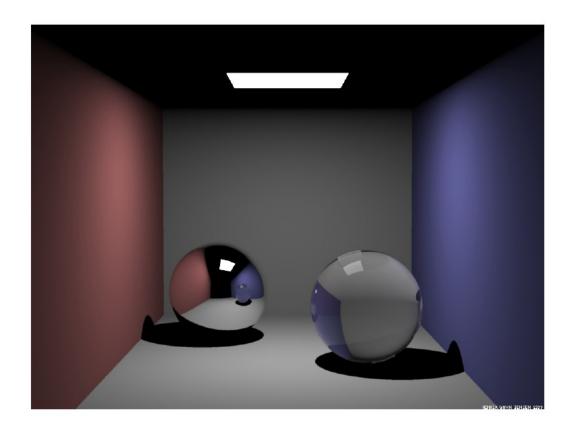

Global Illumination II Path Tracing

Can Whitted-Style Ray Tracing Produce the Glossy Effect?



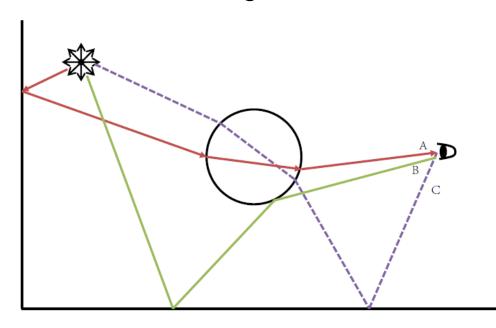
Mirror reflection

Glossy reflection

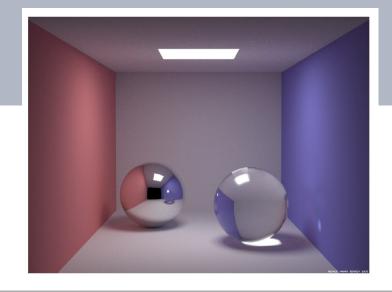
How about diffusion reflection?

(a) Whitted-Style Ray Tracing

(b) Global Illumination using Photon Maps


光路传输记法:

L (Light): 光路从光源发出


D (Diffuse): 在物体表面发生漫反射

S (Specular): 在物体表面发生镜面反射或者折射

V (Volumetric Scattering): 进入介质发生体积散射

a,b,c 三条光路,对应记号分别为 LDSSE,LDSE,LSSDE

LDE, LSE	直接光照 ,表面亮度可用传统的直接 光照模型来计算,如Phong[11],Blinn[12] 等。
L(S D)S+E	一次或多次 镜面反射/折射的间接光照 ,如看到 的镜子中的物体。经典的光线跟踪算法可以准确 计算
LS+ DE	焦散效果(Caustics),例如玻璃杯投射在桌上的亮斑,是典型的 间接光照 效果之一。
L(S D)*DDE	漫反射材质间的颜色扩散效果(Color Bleeding), 典型的间接光照效果之一。
L(S D)+DS+E	被一次或多次镜面反射的焦散或者颜色扩散效果。
L(S D)+D(S D)*E	其他的光路传输。由于经过了多次漫反射,其光 照强度的贡献往往较低,不易被注意到。

Second Question: What?

Ray Tracing:

- Whitted Ray Tracing
- **Distribution** ray tracing:
 - Path Tracing, a ray tracing method based on integral transport equation and rendering equation
 - Path Tracing

Dallas, August 18-22

Volume 20, Number 4, 1986

- · Bidirectional Path Tracing
- Metropolis Light Transport
- Energy Redistribution Path
 Tracing
- ...

THE RENDERING EQUATION

James T. Kajiya California Institute of Technology Pasadena, Ca. 91125

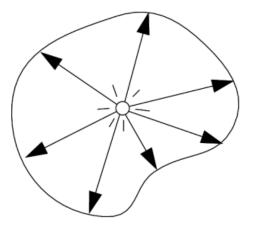
Last Question: How?

- Path Tracing:
 - Radiometry (辐射度量学), a measurement system for illumination
 - Integral Light Transport Equations
 - The reflection equation
 - The rendering equation
 - Probability and Monte Carlo Integration
 - Algorithm

Radiometry

• Radiant Energy Q, Radiant Flux Φ , Radiant Intensity $I(\omega) \equiv \frac{\mathrm{d}\Phi}{\mathrm{d}\omega}$

LED灯: 90 lm/W 白炽灯: 12 lm/W


SI radiometry units

Quantity		Unit		Dimension	Notes
Name	Symbol ^[nb 1]	Name	Symbol	Symbol	Notes
Radiant energy	$Q_{\mathrm{e}}^{[nb\;2]}$	joule	J	M ⋅ L ² ⋅ T ⁻²	Energy of electromagnetic radiation.
Radiant flux	$\Phi_{ m e}^{ m [nb~2]}$	watt	W = J/s	M ⋅ L ² ⋅ T ⁻³	Radiant energy emitted, reflected, transmitted or received, per unit time. This is sometimes also called "radiant power", and called luminosity in Astronomy.
Radiant intensity	$I_{\mathrm{e},\Omega}$ [nb 5]	watt per steradian	W/sr	M ⋅ L ² ⋅ T ⁻³	Radiant flux emitted, reflected, transmitted or received, per unit solid angle. This is a <i>directional</i> quantity.

https://en.wikipedia.org/wiki/Radiant_intensity

Radiometry

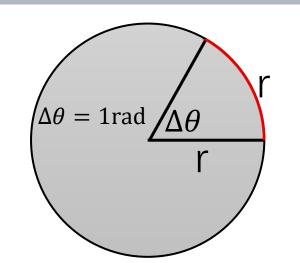
• Radiant Energy Q, Radiant Flux Φ , Radiant Intensity $I(\omega) \equiv \frac{\mathrm{d}\Phi}{\mathrm{d}\omega}$

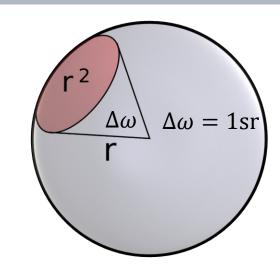
Radiant Flux = 815 lumens

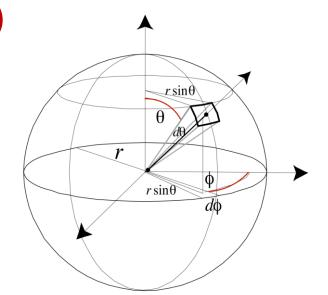
Radiant Intensity = 815 lumens / (4π)

SI radiometry units

	Quantity		Unit		Dimension	Notes
	Name	Symbol ^[nb 1]	Name	Symbol	Symbol	Notes
	Radiant energy	$Q_{\rm e}^{[{\sf nb}\;2]}$	joule	J	M·L ² ·T ⁻²	Energy of electromagnetic radiation.
)	Radiant flux	$\Phi_{ m e}^{ m [nb~2]}$	watt	W = J/s	M ⋅ L ² ⋅ T ⁻³	Radiant energy emitted, reflected, transmitted or received, per unit time. This is sometimes also called "radiant power", and called luminosity in Astronomy.
	Radiant intensity	$I_{ m e,\Omega}$ [nb 5]	watt per steradian	W/sr	M·L ² ·T ⁻³	Radiant flux emitted, reflected, transmitted or received, per unit solid angle. This is a <i>directional</i> quantity.


https://en.wikipedia.org/wiki/Radiant_intensity

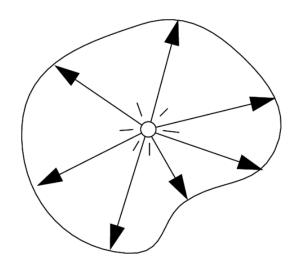

9


Radiant Intensity

- $I(\omega) \equiv \frac{\mathrm{d}\Phi}{\mathrm{d}\omega}$
- unit W/sr, or cd=candela=lm/sr
- Power per unit solid angle
- Solid Angle: $\Delta \omega = \frac{A}{r^2} \operatorname{sr}$
- Sphere has 4π steradians (球面度)

• Along the direction of (θ, ϕ) , calculate the $d\omega$ using $d\theta$, $d\phi$ Hint: $d\omega = \frac{dA}{r^2}$

$$d\omega = \frac{dA}{r^2}$$

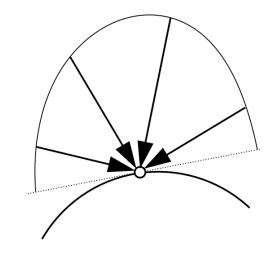

$$dA = (rd\theta)(r\sin\theta \,d\phi) = r^2\sin\theta \,d\theta d\phi$$

$$d\omega = \sin\theta \,d\theta d\phi$$

We can represent $\Delta\omega$ as $(\Delta\theta, \Delta\phi)$, i.e., we can represent ω as (θ, ϕ)

Radiometry

• Important Light Measurements of Interest

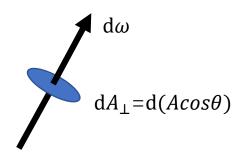

Light Emitted From A Source

"Radiant Intensity"

$$I(\omega) = \frac{\mathrm{d}\Phi}{\mathrm{d}\omega}$$

power per unit solid angle (功率角密度)

unit: W/sr or lm/sr


Light Falling On A Surface

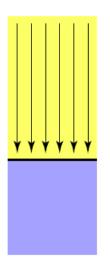
"Irradiance"

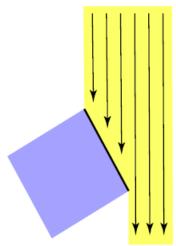
$$E(p) = \frac{\mathrm{d}\Phi(p)}{\mathrm{d}A}$$

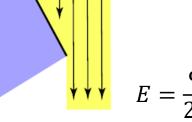
power per unit area incident on a surface point (功率面密度) unit:W/m² or lm/m²

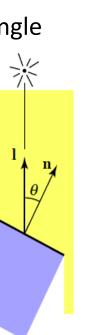
Rendering is all about radiance computation!

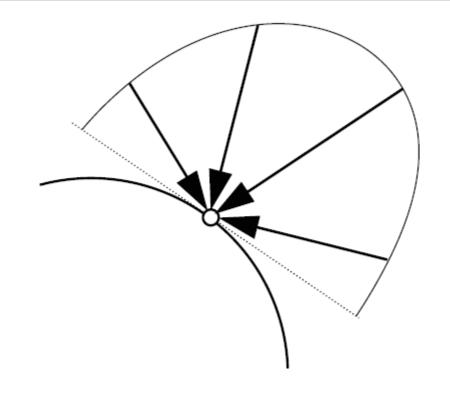
Light Traveling Along A Ray

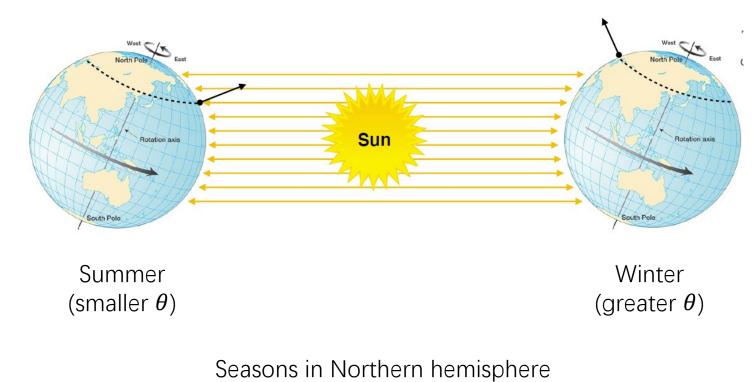

"Radiance"

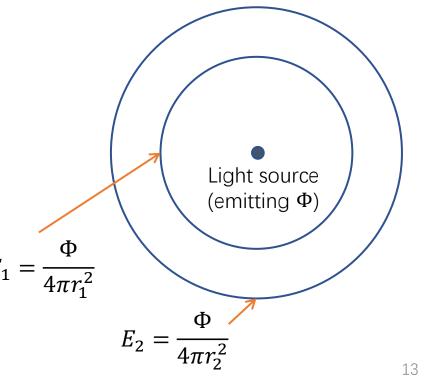

$$L(p,\omega) = \frac{\mathrm{dI}(\omega)}{\mathrm{d}(A\cos\theta)} = \frac{\mathrm{d}E(p)}{\mathrm{d}\omega\cos\theta} = \frac{\mathrm{d}^2\Phi(p)}{\mathrm{d}\omega\mathrm{d}(A\cos\theta)}$$


the quantity carried by a ray
功率角密度的投影面密度
功率投影面密度的角密度
描述某场景的光分布的最基础"场量"


Irradiance


- Irradiance (辐照度)
 - The power per unit area incident on a surface point.
 - $E(x) \equiv \frac{\mathrm{d}\Phi(x)}{\mathrm{d}A}$
 - Lambert's Cosine Law
 - Irradiance at surface is proportional to cosine of angle between light direction and surface normal.



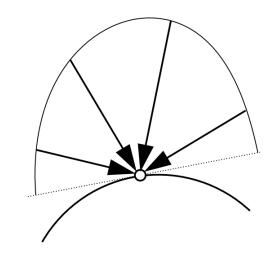

$$E = \frac{\Phi}{A}\cos\theta = \frac{\Phi}{A}(\boldsymbol{l}\cdot\boldsymbol{n})$$

Irradiance

Seasons

- Radiant exitance (Irradiance)
 Falloff
 - Strength of Radiant exitance
 (Irradiance) decays in proportion to
 the squared distance

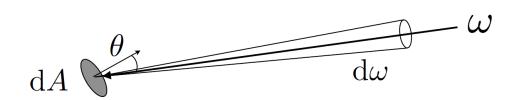
Radiance


- Radiance (辐亮度,辐射度)
 - The radiance (luminance) is the power emitted, reflected, transmitted or received by a surface, per unit solid angle, per projected unit area.
 - $L(p,\omega) \equiv \frac{\mathrm{d}^2 \Phi(p,\omega)}{\mathrm{d}\omega \mathrm{d}A \cos \theta}$
 - $\cos \theta$ accounts for the projected surface area
 - Relation with other quantities
 - Irradiance: power per projected unit area \rightarrow Radiance: Irradiance per solid angle
 - Intensity: power per solid angle

 Radiance: Intensity per projected unit area

Incident Radiance

• Irradiance: power per projected unit area \rightarrow Radiance: Irradiance per solid angle

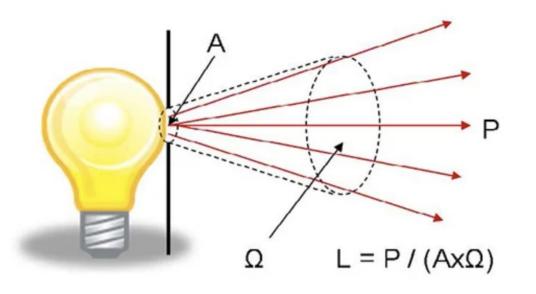


Light Falling On A Surface

"Irradiance"

$$E(p) = \frac{\mathrm{d}\Phi(p)}{\mathrm{d}A_{\perp}}$$

power per unit area incident on a surface point (功率面密度) unit:W/m² or lm/m²


$$L_{i}(p,\omega) = \frac{dE(p,\omega)}{\cos\theta \,d\omega}$$
$$E(p) = \int_{H^{2}} L_{i}(p,\omega) \cos\theta \,d\omega$$

Unit hemisphere: H^2

Irradiance: total power received by area $\mathrm{d}A$ Radiance: power received by area $\mathrm{d}A$ from "direction" $\mathrm{d}\omega$

Exiting Radiance

• Intensity: power per solid angle -> Radiance: Intensity per projected unit area

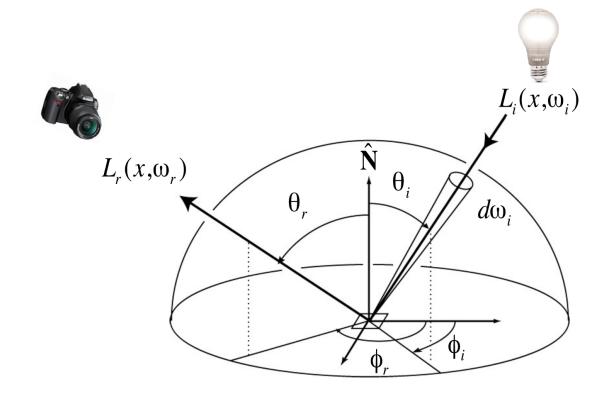
$$L(p,\omega) \equiv \frac{\mathrm{d}I(p,\omega)}{\mathrm{d}A\cos\theta}$$
$$I(\omega) = \int_{A} L_{i}(p,\omega)\cos\theta \,\mathrm{d}A$$

Radiance

- Incident radiance (入射辐亮度)
 - Incident radiance is the irradiance per unit solid angle arriving at the surface.
 - i.e., it is the light arriving at the surface along a given ray (point on surface and incident direction).

•
$$L(p,\omega) = \frac{\mathrm{d}E(p)}{\mathrm{d}\omega\cos\theta}$$
; $E(p) = \int_{H^2} L_i(p,\omega)\cos\theta\,\mathrm{d}\omega$

- Exiting radiance (出射辐亮度)
 - Exiting surface radiance is the intensity per unit projected area leaving the surface.
 - e.g., for an area light it is the light emitted along a given ray (point on surface and exit direction).

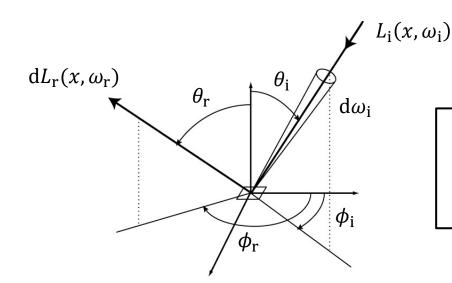

•
$$L(p,\omega) \equiv \frac{\mathrm{d}I(p,\omega)}{\mathrm{d}A\cos\theta}$$
; $I(\omega) = \int_{A} L_i(p,\omega)\cos\theta \,\mathrm{d}A$

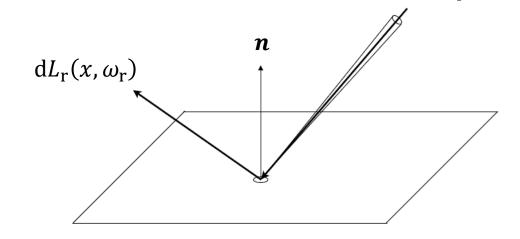
Last Question: How?

- Path Tracing:
 - Radiometry (辐射度量学), a measurement system for illumination
 - Integral Light Transport Equations
 - The reflection equation
 - The rendering equation
 - **Probability** and Monte Carlo Integration
 - Algorithm

Integral Light Transport Equations

The Reflection Equation

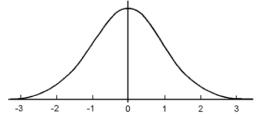

Unit hemisphere: H²


$$L_r(\mathbf{p}, \omega_r) = \int_{H^2} f_r(\mathbf{p}, \omega_i \to \omega_r) L_i(\mathbf{p}, \omega_i) \cos \theta_i d\omega_i$$

Bidirectional Reflectance Distribution Function

- Reflection at a Point
 - At dA, Radiance from *incoming* direction ω_i turns into the irradiance dE
 - dE then become the radiance dL_r to some *outgoing* direction ω_r .
- The Bidirectional Reflectance Distribution Function (BRDF, 双向反射分布函数)

How much light is reflected into ω_r from ω_i



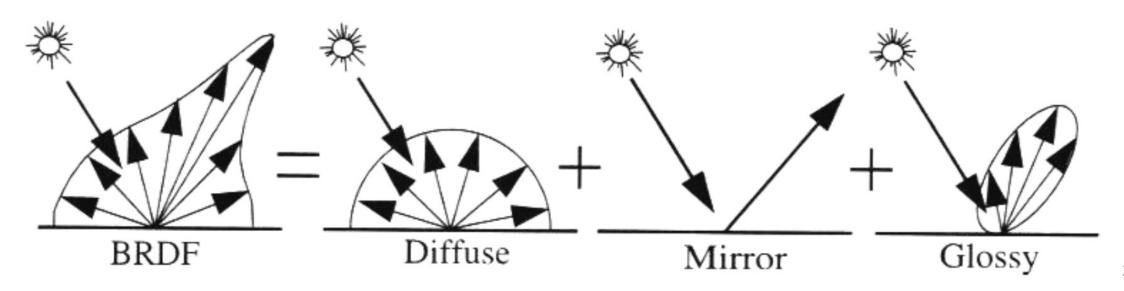
$$f_{\rm r}(\omega_{\rm i} \to \omega_{\rm r}) = \frac{{\rm d}L_{\rm r}(\omega_{\rm r})}{{\rm d}E_{\rm i}(\omega_{\rm i})} = \frac{{\rm d}L_{\rm r}(\omega_{\rm r})}{L_{\rm i}(\omega_{\rm i})\cos\theta_{\rm i}\,{\rm d}\omega_{\rm i}}$$

 $dE(\omega_i)$

Review: Probabilities

- Continuous variable X and Probability density function p(x)
 - $X \sim p(x)$
 - Understanding: randomly pick an X → more likely to be a number closer to 0 (in this case)

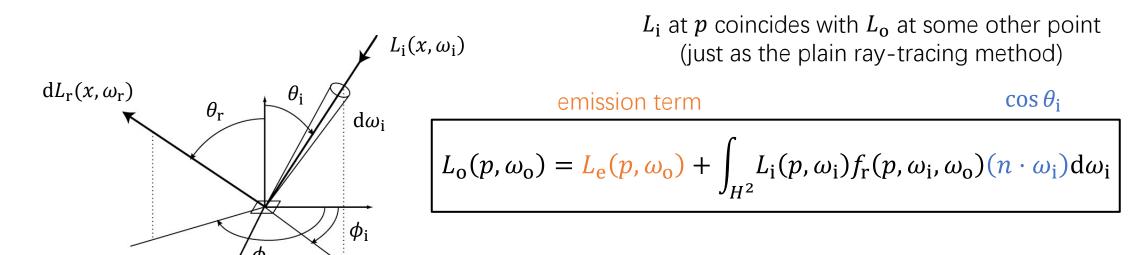
- Conditions on p(x)
 - $p(x) \ge 0$
 - $\int p(x) dx = 1$


Expected value of X

•
$$E(x) = \int xp(x) dx$$

Bidirectional Reflectance Distribution Function

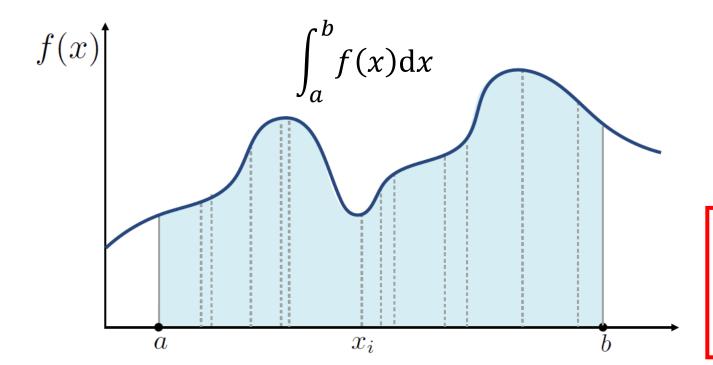
Description of visual surface appearance:


- Ideal specular reflection (Reflection law, Mirror)
- Glossy reflection (Directional diffuse, Shiny surfaces)
- Ideal diffuse reflection (Lambert's law, Matte surfaces)

The Rendering Equation

- The reflection equation
 - $L_{\rm r}(p,\omega_{\rm r}) = \int_{H^2} f_{\rm r}(p,\omega_{\rm i} \to \omega_{\rm r}) L_{\rm i}(p,\omega_{\rm i}) \cos\theta_{\rm i} d\omega_{\rm i}$
 - Reflected radiance depends on incoming radiance,
 - But incoming radiance depends on reflected radiance (at another point in the scene)

The rendering equation (rewritten reflection equation)



Last Question: How?

- Path Tracing:
 - Radiometry (辐射度量学), a measurement system for illumination
 - Integral Light Transport Equations
 - The reflection equation
 - The rendering equation
 - Probability and Monte Carlo Integration
 - Algorithm

Monte Carlo Integration

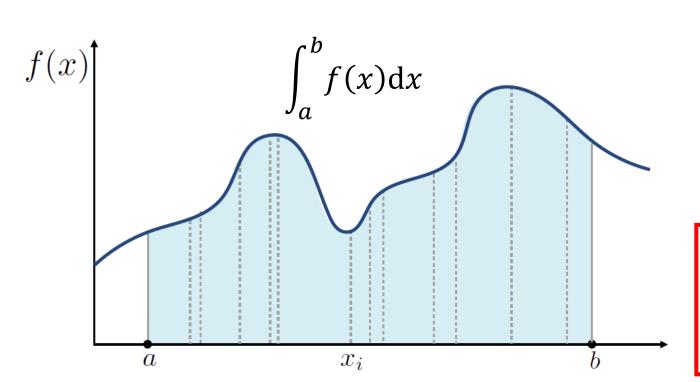
- How to numerically estimate the integral of a function?
 - Averaging random samples of the function's value.

• Definite integral

$$\int_{a}^{b} f(x) \mathrm{d}x$$

Random variable

$$X_i \sim p(x)$$


• Monte Carlo estimator

$$F_N = \frac{1}{N} \sum_{i=1}^{N} \frac{f(X_i)}{p(X_i)}$$

Monte Carlo Integration

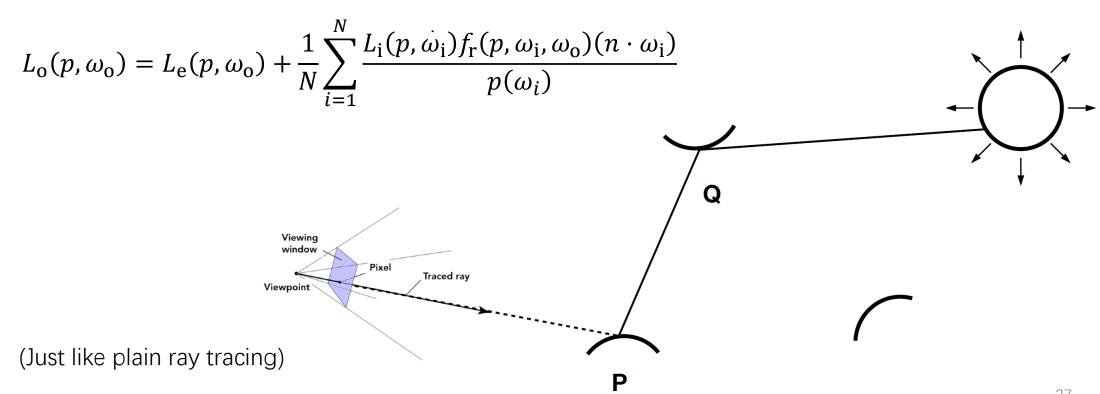
- How to numerically estimate the integral of a function?
 - Averaging random samples of the function's value.

uniform sampling

- Definite integral $\int_{a}^{b} f(x) dx$
- Random variable

$$X_i \sim p(x) \left(= \frac{1}{b-a} \right)$$

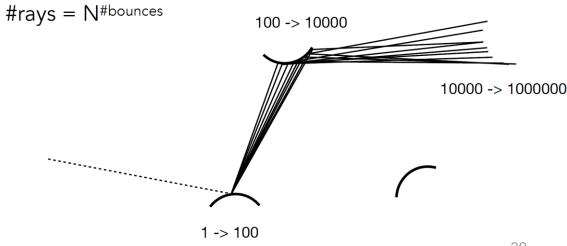
Monte Carlo estimator


$$F_N = \frac{1}{N} \sum_{i=1}^N \frac{f(X_i)}{p(X_i)} \left(= \frac{b-a}{N} \sum_{i=1}^N f(X_i) \right)$$

A Simple Monte Carlo Solver

A simple Monte Carlo solver to the rendering equation

$$L_{o}(p,\omega_{o}) = L_{e}(p,\omega_{o}) + \int_{\Omega^{+}} L_{i}(p,\omega_{i}) f_{r}(p,\omega_{i},\omega_{o}) (n \cdot \omega_{i}) d\omega_{i}$$


Last Question: How?

- Path Tracing:
 - Radiometry (辐射度量学), a measurement system for illumination
 - Integral Light Transport Equations
 - The reflection equation
 - The rendering equation
 - Probability and Monte Carlo Integration
 - Algorithm

A Simple Monte Carlo Solver

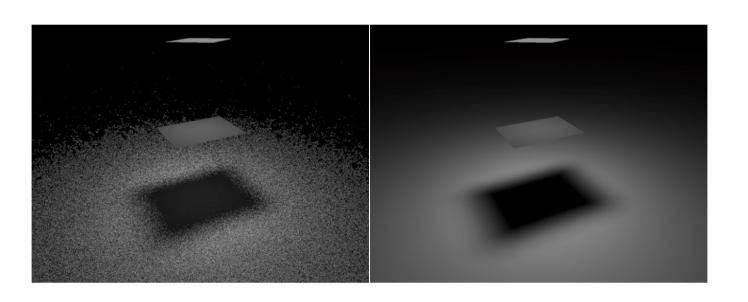
A simple Monte Carlo solver to the rendering equation

• Problem: exponential explosion

Path Tracing

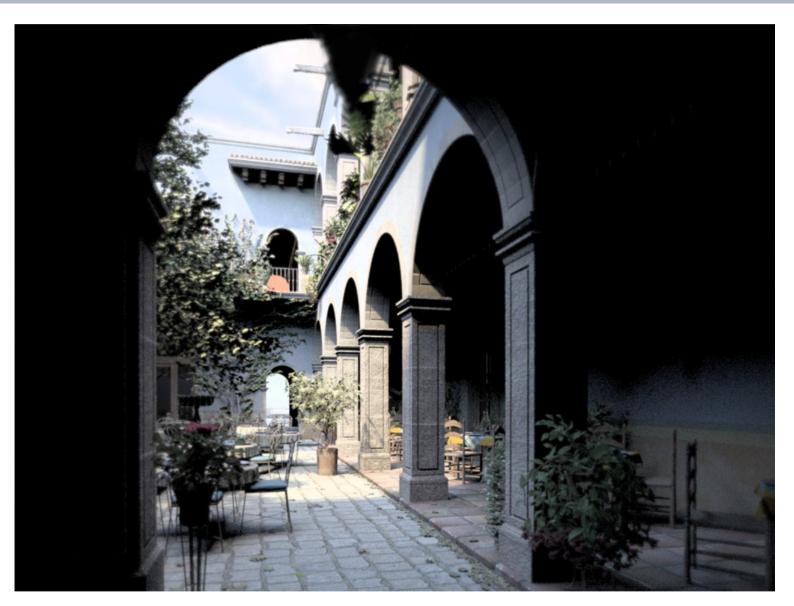
Path-tracing solver to the rendering equation

```
Main difference from the simple alg.:
                                                                   Only trace ONE light
shade(p, wo)
    Manually specify a probability P RR
    Randomly select ksi in a uniform dist. in [0, 1]
    If (ksi > P RR) return 0.0;
                                                             Russian roulette (俄罗斯轮盘赌)
    Randomly choose ONE direction wi~pdf(w)
                                                                To stop algorithm
    Trace a ray r(p, wi)
                                                                The light does not stop bouncing indeed
    If ray r hit the light
                                                                    Directly limiting bounces is wrong
        Return L_i * f_r * cosine / pdf(wi) / P_RR
    Else If ray r hit an object at q
    Return shade(q, -wi) * f_r * cosine / pdf(wi) / P_RR
```

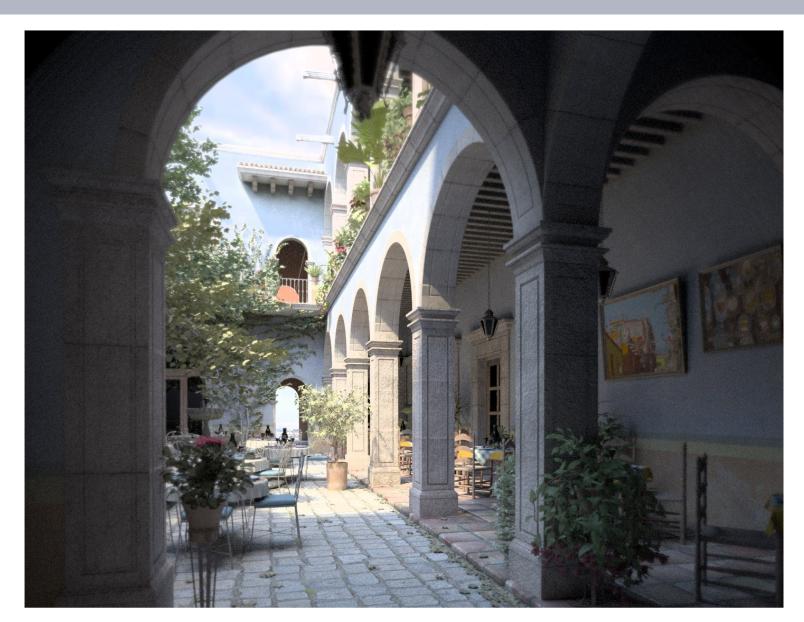

Tail-recursive (尾递归)

Path Tracing

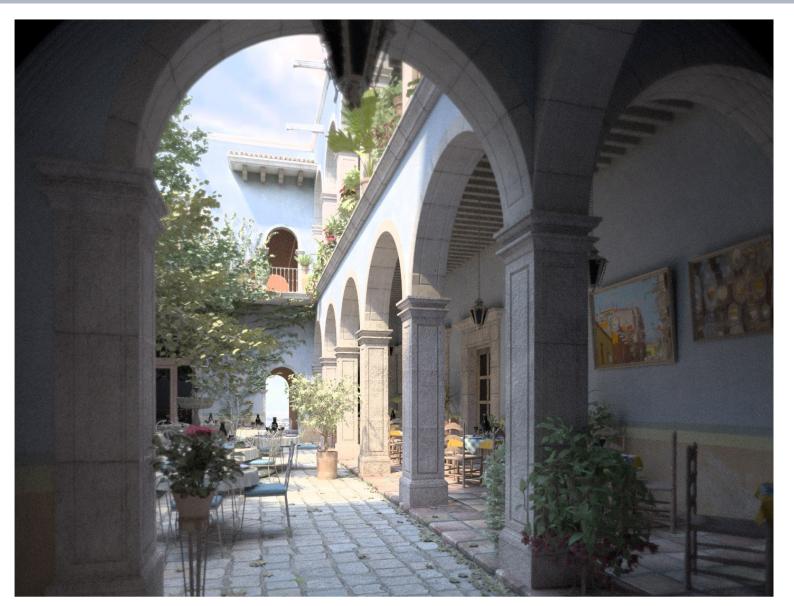
- Ray generation
 - If we sample ONE light per pixel, the result is noisy (the left image)
 - Solution: sample many lights per pixel, as anti-aliasing in ray tracing

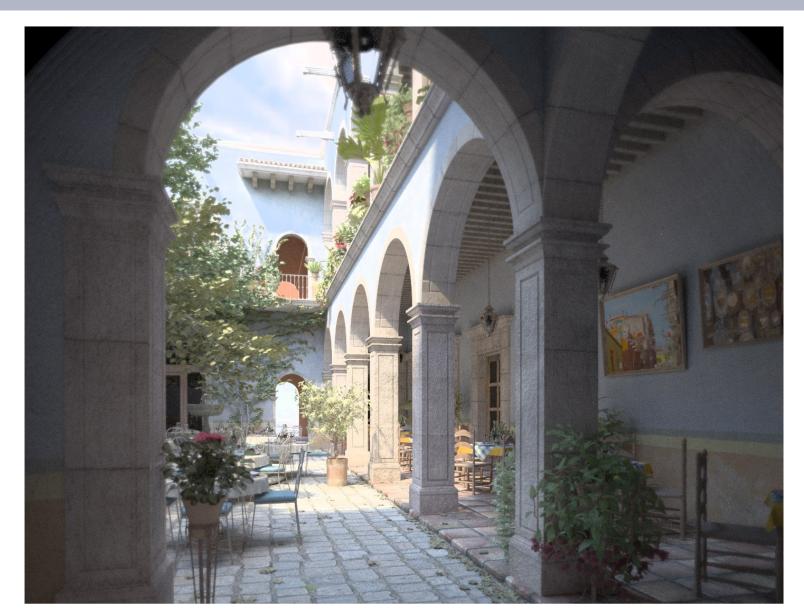

```
ray_generation(camPos, pixel)
   Uniformly choose N sample positions within the pixel
   pixel_radiance = 0.0
   For each sample in the pixel
        Shoot a ray r(camPos, cam_to_sample)
        If ray r hit the scene at p
             pixel_radiance += 1 / N * shade(p, sample_to_cam)
        Return pixel_radiance
```

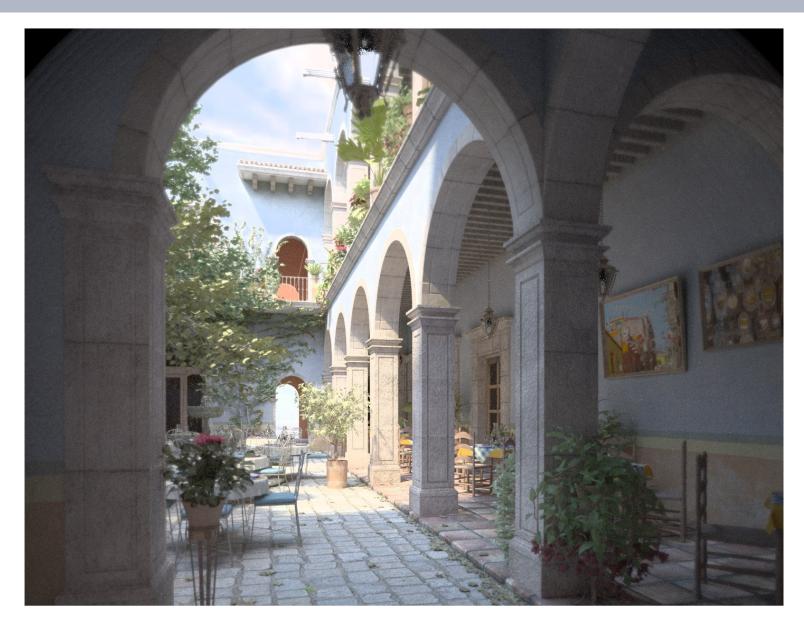
Low SPP (samples per pixel)



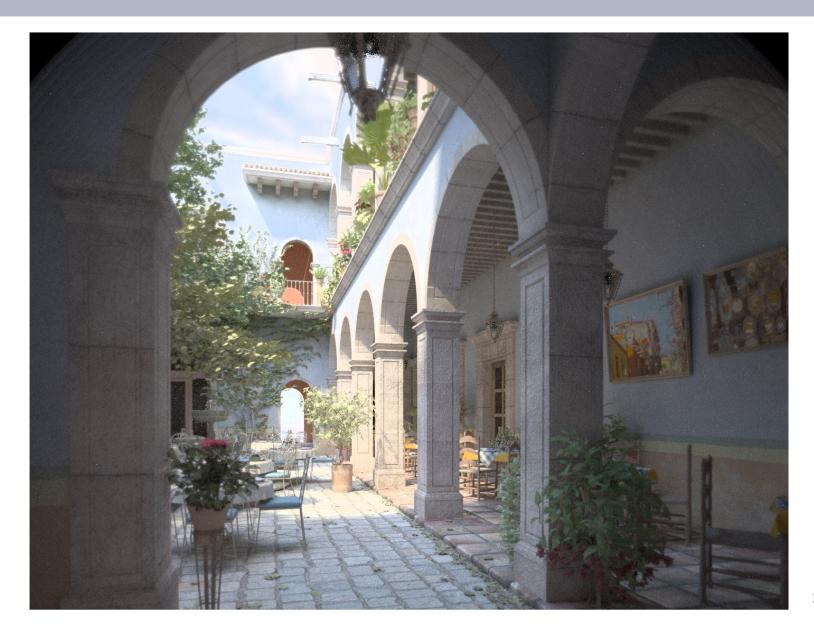
High SPP


- Direct illumination
 - (Zero bounce)


- Global illumination
 - (One bounce)


- Global illumination
 - (Two bounces)

- Global illumination
 - (Four bounces)



- Global illumination
 - (Eight bounces)

Cutting the Number of Bounces

- Global illumination
 - (16 bounces)
- Conclusion
 - Higher brightness
 - → (often means)
 - Higher accuracy

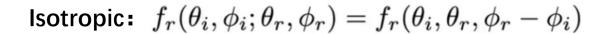
Is Path Tracing Correct?

• Yes, almost 100% correct, a.k.a. PHOTO-REALISTIC

Photo

Path-traced global illumination

The Cornell box — http://www.graphics.cornell.edu/online/box/compare.html


Advanced Topics

BRDF,
Other Materials,
Importance Sampling,
Other Rendering Methods,

- Measurement by gonioreflectometer (角反射仪)
 - An image-based approach
 - General pipeline

```
for each outgoing direction \omega_{\rm o} move light to illuminate surface with a thin beam from \omega_{\rm o} for each incoming direction \omega_{\rm i} move sensor to be at direction \omega_{\rm i} from surface measure incident radiance
```

- Efficiency improvement
 - Isotropic surfaces reduce dimensionality from 4D to 3D
 - Reciprocity reduces the number of measurements by half
 - Clever optical systems...?

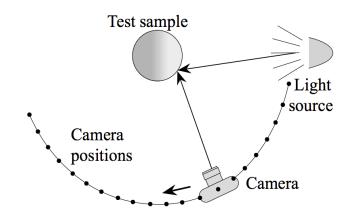
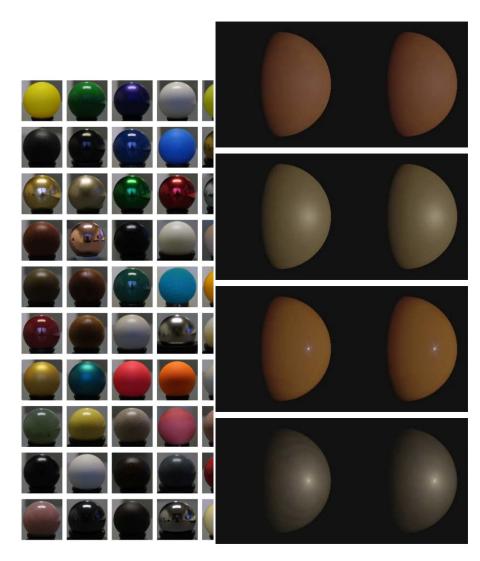



Image-Based BRDF Measurement Including Human Skin [Marschner et al. 1999]

Spherical gantry at UCSD

- Tabular representation
 - Store regularly-spaced samples in $(\theta_i, \theta_o, |\phi_i \phi_o|)$
 - Reparameterize angles to better match specularities
 - Generally need to resample measured values to table
 - Very high storage requirements
 - A data-driven reflectance model [Matusik et al. 2003]
 - θ_i : 90 samples
 - θ_0 : 90 samples
 - $|\phi_{\rm i} \phi_{\rm o}|$: 180 samples
 - Thus 1,458,000 samples per material
 - (per sphere in the right)

 n_1

 n_2

Snell's Law and Fresnel Term

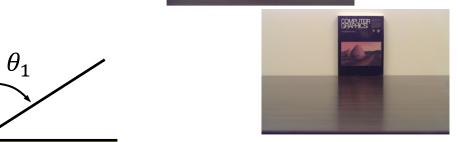
- $n_1 \sin \theta_1 = n_2 \sin \theta_2$
- Reflectance (反射率) R depends on incident angle
 - The brightness of shadows varies as grazing angle increases (the right figures)
 - Non-linear approximation of reflectance functions [Lafortune et al. 1997]
- Accurate Fresnel term: need to consider polarization

•
$$R_{\rm S} = \left| \frac{n_1 \cos \theta_1 - n_2 \cos \theta_2}{n_1 \cos \theta_1 + n_2 \cos \theta_2} \right|^2$$

•
$$R_{\rm p} = \left| \frac{n_1 \cos \theta_2 - n_2 \cos \theta_1}{n_1 \cos \theta_2 + n_2 \cos \theta_1} \right|^2$$

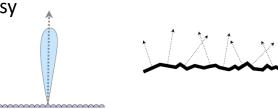
•
$$R_{\text{eff}} = \frac{1}{2} \left(R_{\text{s}} + R_{\text{p}} \right)$$

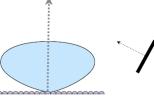
Approximate: Schlick's approximation


$$R_0 = \left(\frac{n_1 - n_2}{n_1 + n_2}\right)^2$$

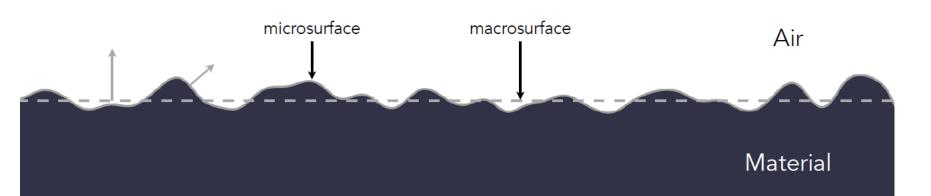
•
$$R(\theta_1) = R_0 + (1 - R_0)(1 - \cos \theta_1)^5$$

$$\theta_1 \to 0, R \to \left(\frac{n_1 - n_2}{n_1 + n_2}\right)^2; \quad \theta_1 \to \frac{\pi}{2}, R \to 1;$$

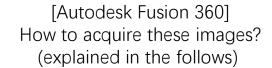


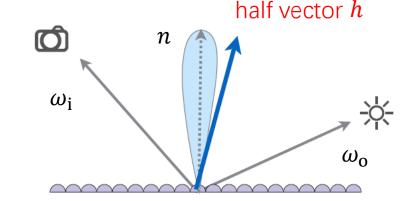


- Microfacet Model (微表面模型)
 - Rough surface
 - Macroscale: flat & rough
 - Microscale: bumpy & specular
 - Individual elements of surface act like mirrors
 - Known as Microfacets
 - Each microfacet has its own normal


- Microfacet BRDF
 - Key: the distribution of microfacets' normal
 - Concentrated → glossy

• Spread → diffuse




- Microfacet BRDF
 - Key: the distribution of microfacets' normal

Fresnel term shadowing-masking term distribution of normals

$$f(\omega_{i}, \omega_{o}) = \frac{F(\omega_{i}, h)G(\omega_{i}, \omega_{o}, h)D(h)}{4(n \cdot \omega_{i})(n \cdot \omega_{o})}$$

Advanced Appearance Modeling

- Non-surface models
 - Participating media
 - Hair / fur / fiber (BCSDF)
 - Granular material

[Yan et al. 2015]

[Yan et al. 2014, 2016]

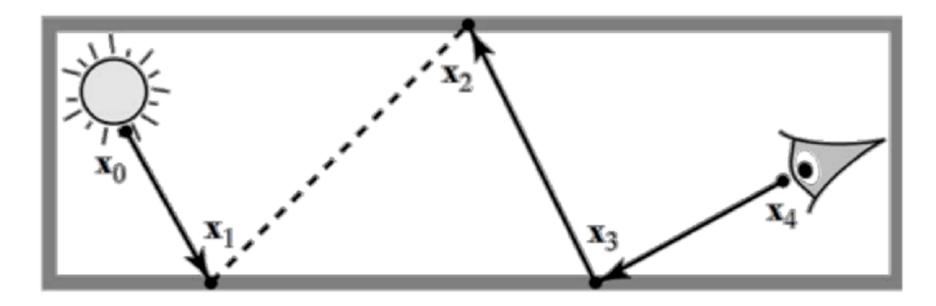
- Surface models
 - Translucent material (BSSRDF)
 - Cloth
 - Detailed material (non-statistical BRDF)

[Meng et al. 2015]

Accelerating Path Tracer

•
$$L_{\rm o}(p,\omega_{\rm o}) = L_{\rm e}(p,\omega_{\rm o}) + \frac{1}{N} \sum_{i=1}^{N} \frac{L_{\rm i}(p,\omega_{\rm i}) f_{\rm r}(p,\omega_{\rm i},\omega_{\rm o}) (n\cdot\omega_{\rm i})}{p(\omega_{\rm i})}$$

- How to choose $p(\omega_i)$?
- Is there any sampling more efficient than uniform one?
- Importance sampling (重要性采样)
 - Recall: $F_N = \frac{1}{N} \sum_{i=1}^N \frac{f(X_i)}{p(X_i)}$
 - $E[F_N] = \int_a^b \frac{f(x)}{p(x)} p(x) dx = \int_a^b f(x) dx$
 - What if $\frac{f(x)}{p(x)} \equiv \lambda$?
 - $F_N = \lambda$
 - It suggests us to
 - sample more points where f(x) is large.


- Idea: the following expectations are equivalent
 - $E[f(X)] = \int f(x)p(x)dx$
 - $X \sim p(x)$
 - $E\left[\frac{p(X)}{q(X)}f(X)\right] = \int f(x)\frac{p(x)}{q(x)}q(x)dx$
 - $X \sim q(x)$

Advanced Light Transport

- Unbiased light transport methods
 - Bidirectional path tracing (BDPT)
 - Metropolis light transport (MLT)
- Biased light transport methods
 - Photon mapping
 - Vertex connection and merging (VCM)
 - Instant radiosity (VPL / many light methods)

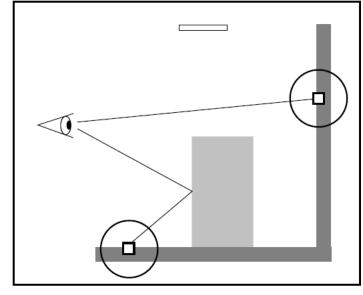
Bidirectional path tracing (BDPT), unbiased

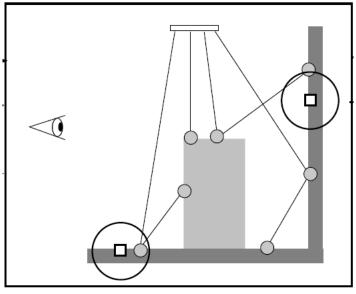
- Traces sub-paths from both the camera and the light
- Connects the endpoints from both sub-paths

[Veach 1997]

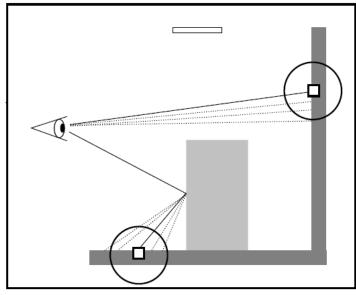
Bidirectional path tracing (BDPT), unbiased

- Traces sub-paths from both the camera and the light
- Connects the endpoints from both sub-paths


(a) Path tracer, 32 samples/pixel

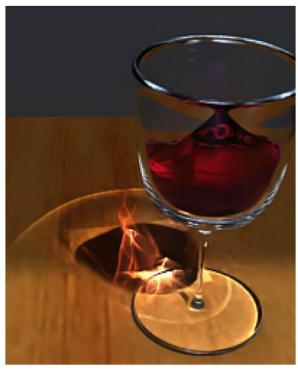

(b) Bidirectional path tracer, 32 samples/pixel

Photon Mapping, biased


- Stage 1 photon tracing
- Stage 2 photon collection (final gathering)

Eye Pass

Photon Pass

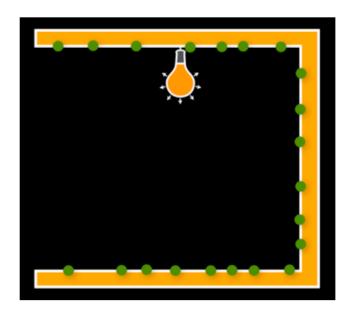


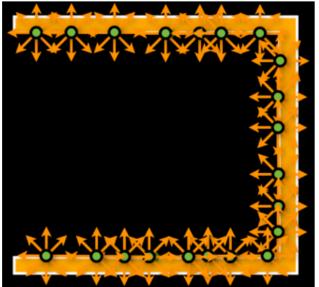
Distributed Ray Tracing Pass

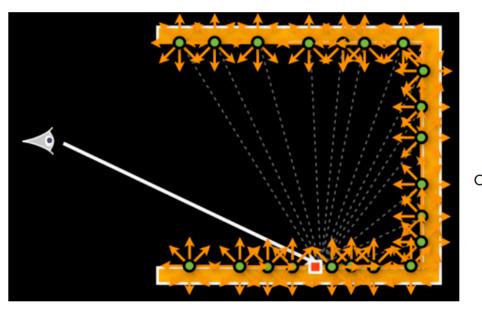
Photon Mapping, biased

 Very good at handling Specular-Diffuse-Specular (SDS) paths and generating caustics

(a) 聚光灯 (b) 平行光 (c) 面光源


54


Instant Radiosity


Sometimes also called many-light approaches

Key idea: Lit surfaces can be treated as light sources

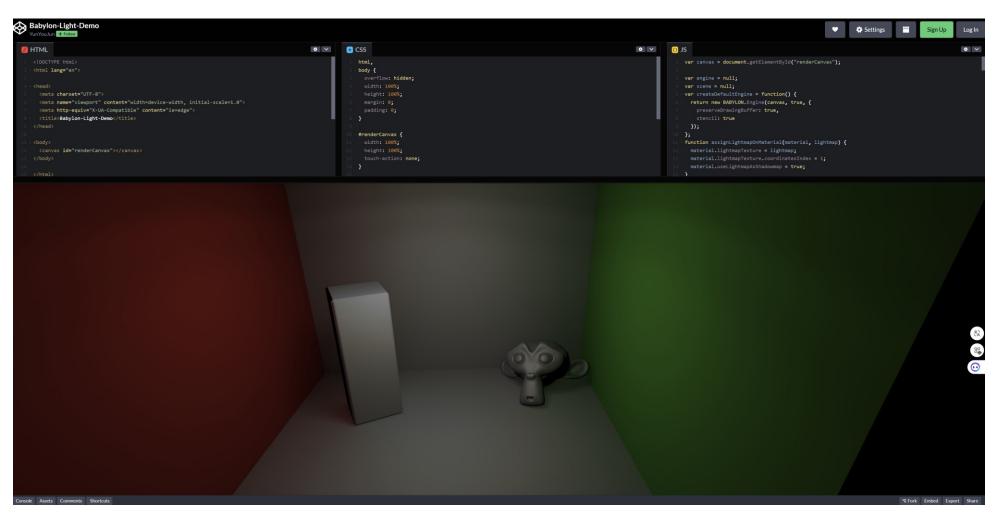
- Pros: fast and usually gives good results on diffuse scenes
- Cons: difficult to handle reflection/refraction/glossy...

[image courtesy of Derek N.]

Instant Radiosity

• B_i (Radiosity/ Radiant exitance, unit W/m^2)

$$B_i = E_i + \rho_i \sum_{s_j} B_i F_{ji}$$


• F_{ji} , Form Factor, $\frac{\text{flux from face j to face i}}{\text{flux of face i}}$

$$F_{ji} = rac{1}{A_i} \int_{x \in s_i} \int_{x' \in s_j} rac{1}{\pi} \operatorname{G}\left(x', \, x
ight) \, \mathrm{d}A(x') \, \mathrm{d}A(x) \ G\left(x', \, x
ight) = rac{\cos heta \cos heta'}{\left\|x' - x
ight\|^2} \mathrm{v}\left(x', \, x
ight) \quad \mathrm{v}\left(x', \, x
ight) = \left\{egin{array}{c} 1 \text{, i j are visible to each other} \ 0 \text{, otherwise}
ight. \end{array}
ight.$$

•
$$ho_i$$
, Reflectivity of face i a parameter
$$\begin{bmatrix} 1-\rho_1F_{11} & -\rho_1F_{12} & \cdots & -\rho_1F_{1N} \\ -\rho_2F_{21} & 1-\rho_2F_{22} & \cdots & -\rho_2F_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ -\rho_NF_{N1} & -\rho_NF_{N2} & \cdots & 1-\rho_NF_{NN} \end{bmatrix} \begin{bmatrix} B_1 \\ B_2 \\ \vdots \\ B_N \end{bmatrix} = \begin{bmatrix} E_1 \\ E_2 \\ \vdots \\ E_N \end{bmatrix}$$

Instant Radiosity

Babylon-Light-Demo https://codepen.io/YunYouJun/pen/VwYMKMy

Conclusion

Path Tracing

- Why? Ray tracing Fails to support glossy/diffuse reflection/soft shadows...
- What? A ray-tracing method following rendering equations
- How? Monte Carlo Path Tracing

Advanced Topics

- Advanced Appearances
- Importance Sampling
- Other Rendering Methods